Ciholas, Inc.

3700 Bell Road System Architecture
Newburgh, IN 47630

1 Architecture Overview

This document describes the CUWB Real-Time Location System (RTLS) architecture and associated components. It
provides a high level overview of the system along with details on how user applications can integrate with the system and
consume location data.

2 System Components Diagram

User Network Anchor Network

I A A
-

Anchors (stationary devices)

i

+ Sensor Data®
((‘ l')) « User Data
+ LED Management
. + CUWB Manager . UWB Network Stack
. « CUWB Configurations ((‘ ’)) . Auto-IP
. + Web GUI « LWIP (TCP/IP)
TS A . CDP Handling (UDP)
- Time Synchronization . ChainPoE™
. UWB Scheduling ainro
: Locathn E"Q'_“e . Tags (mobile devices)
« Occlusion Mitigation
» Advanced Filtering - Sensor Data*
« Sensor Fusion / « User Data
Qrientation® « LED Management
« CUWB Viewer « Time-Based Location « UWB Network Stack
« Analytics Database « Low-Power Battery
« CDP Logger - Package Management Management
« User Data « Device Update + Beacon Rates up to
« Sensor Data™ Management 100 Hz
« User Applications
CUWB Subscribers Host PC CUWBE Devices

* Only Available on supported hardware

2.1 Host PC

The CUWB system utilizes a Host PC running the CUWB Management Package and other support applications. The Host PC
typically runs 64-bit Ubuntu LTS, and is the heart of the CUWB system.

There are two major components on the Host PC: the CUWB Manager and CUWB Configurations. A CUWB Configuration is
a collection of settings that define CUWB RTLS device behavior and system outputs. A running CUWB Configuration is
referred to as as a “CUWBNet,” and represents a collection of anchors and tags whose behavior and outputs are
governed by the configuration. The CUWB Manager is a web based tool for managing and interacting with CUWB
Configurations or CUWBNets. It can be used to launch (aka. start and stop) CUWBNets as well as provide status and other
pertinent system information. CUWBNets also manage the underlying RTLS code, referred to as the CUWB Engine, that
processes incoming timing data transforming it into output location.

- Revision: 5.0.1
@ Ciholas, Inc. Page 1 of 8

https://cuwb.io/docs/v5.0/software/cuwb-manager

System Architecture

The CUWB System may use one or more computers running as a Host PC. Systems that utilize more than one Host PC
must be connected on the same Anchor LAN for intercommunication.

Please reference the CUWB Manager Manual for details on Host PC requirements and details on installation.

2.2 CUWB Subscribers

CUWB subscribers are applications that consume data from a CUWBNet instance. These applications range from Ciholas
provided applications to custom integrations. Details on some of these applications can be found in Support Applications
below.

Typical subscriber applications consume Ciholas Data Protocol (CDP) data that is received via a configured UDP stream,
referred to as the “User Data Stream”. An example application that consumes CUWB output location data via CDP can be
found here: Using CDP Application Note. More example applications of CUWB subscribers can be found on the Ciholas
GitHub.

2.3 CUWB Devices

CUWB devices communicate over Ultra-Wideband (UWB) and are compatible with the CUWB RTLS system. Some CUWB
devices also connect to a running CUWBNet over Ethernet utilizing CDP, or via a serial connection using Ciholas Serial
Protocol (CSP) which is based on CDP.

There are two classes of CUWB devices: Anchors and Tags.

2.3.1 Anchors

To generate meaningful position output, RTLS applications require known physical locations within a region to compare
timing data. Anchors are devices placed in a region of interest that act as a static reference point for the CUWB System.

Anchors must have Ethernet connectivity to communicate with the CUWBNet for configuration, scheduling, commands
and data transport.

2.3.2 Tags

Tags are mobile devices placed in a region of interest that are trackable. Anchors hear UWB transmissions from tags and
report receive timing to the CUWB Engine where the information is used to compute the location of each tag. Tags can be
placed on objects or personnel to provide real-time location data.

. Revision: 5.0.1
@ Ciholas, Inc. Page 2 of 8

https://cuwb.io/docs/v5.0/software/cuwb-manager
https://cuwb.io/docs/v5.0/software/cuwb-manager/#host-pc-requirements
https://cuwb.io/docs/v5.0/software/cuwb-manager/#installation
https://cuwb.io/docs/v5.0/integration/application-notes/apd004-using-cdp-python
https://github.com/ciholas/

System Architecture

3 System Architecture Diagram

The following diagram illustrates the logical connections between the Anchor Network, Host PC, and CUWB Subscribers.
The connections lines show various application end-points and communication between hardware and software within the
CUWB System.

CUWB Subscribers | Host PC Tag
Web Browser | :
| User Application
Ul b i
WebSocket 4
CUWB Manager . #.Iser Data
AFI < L

CUWB Firmware

]

e

User Apps I
P - ‘ UﬂB ‘ ‘ CSP e |||
= cuws CUWB Engine 3
Configuration g ="
cor File >
CDP | i CDP
| ¥ Y
CUWB Viewer ' .
CDP |« ! UWB
|
| CUWE Firmware
CDP Logger
' » COP
CDP |« T
| Anchor

3.1 CUWB Manager

The CUWB Manager is a process that runs on the Host PC. The process runs at system startup, and is used to create,
configure, and perform actions on CUWB Configurations. It hosts the CUWB Manager frontend to HTML clients. See the
CUWB Manager Manual for additional instructions on use.

3.1.1 API Backend

The backend is a python-based web server that exposes a RESTful HTTP API. The documentation for the API is available
under AP| Control.

The backend reads and writes to the CUWB Configuration File and monitors CDP Streams for status information. The
backend utilizes redis for interprocess communication with the CUWB Engine.

3.1.2 Ul Frontend

The frontend is a web application served by the CUWB Manager which provides end users with a convenient interface to
configure, monitor, and control CUWB Configurations and CUWBNets.The frontend is accessed by a browser. It utilizes the
RESTful APl to communicate with the backend, providing users with up-to-date information regarding CUWB

Configurations and CUWBNets. Additionally, the frontend opens a WebSocket connection to receive real-time updates from
the Host PC. For a walkthrough of the CUWB Manager Ul, see the CUWB Manager GUI Walkthrough.

3.1.3 Websocket

The CUWB Manager launches a separate ‘WebSocket’ process at startup. The WebSocket process is used to send events,
such as device and network status, to frontend instances.

- Revision: 5.0.1
@ Ciholas, Inc. Page 3 of 8

https://cuwb.io/docs/v5.0/software/cuwb-manager
https://cuwb.io/docs/v5.0/integration/data-formatting/rest-api
https://cuwb.io/docs/v5.0/software/cuwb-manager/#web-interface-walkthrough

System Architecture

3.2 CUWB Configurations & CUWBNets

A CUWB Configuration is a user configured set of UWB devices and settings that define a CUWBNet. A CUWBNet is the
running, or operating, collection of anchors and tags whose settings are defined by a CUWB Configuration. The Host PC
can have multiple CUWBNets running at the same time.

3.2.1 CUWB Configuration File

CUWB Configuration Files are databases with the .cuwb file extension stored on the Host PC. The configuration files are
read and monitored by the CUWB Manager and allow for dynamic changes even when the associated CUWBNet is running.

3.3 CUWB Engine

The CUWB Engine is a process that is instantiated by the CUWB Manager using the settings defined by a CUWB
Configuration. In the frontend User Interface (Ul) users ‘start’ a CUWB Configuration resulting in a CUWB Engine (active
CUWBNet instance) that is based on that configuration. The CUWB Engine is responsible for managing Anchors and Tags:
scheduling UWB transmission, synchronizing time, calculating locations, and much more.

3.3.1 Configuration Management

When a CUWB Engine is launched, it reads the CUWB Configuration file and schedules device transmission over UWB
accordingly. It monitors the CUWB Configuration file for any changes, making adjustments to network and device
parameters as indicated by the configuration file.

3.3.2 Scheduler

The CUWB Engine implements a scheduler that is responsible for managing the UWB transmission and receptions for all
CUWB devices in a CUWB Configuration. The schedule is based on parameters provided by the user using the CUWB
Manager front-end web interface. These parameters define various network behaviors such as Tag beacon rates, Anchor
synchronization rate, smoothing, etc.

3.3.3 Time Synchronization Management

The CUWB Engine tracks the internal drift and offset of the Anchor clocks. The CUWB Engine generates a common
network time that is utilized by each device to schedule transmissions and receptions. Network time is used for precision
time stamping of events and is used by the CUWB Engine for Tag localization.

3.3.4 Localization

The CUWB Engine is responsible for collecting timestamps for all UWB transmissions and receptions defined by a CUWB
Configuration. UWB transmit and receive timestamps are converted to network time and are used by the CUWB Engine for
localization. Depending on the network mode (MultiTime™ or MultiRange™), the CUWB Engine calculates ranges or time
differences between devices and implements an algorithm to determine XYZ location of devices based on that data.

. Revision: 5.0.1
@ Ciholas, Inc. Page 4 of 8

https://cuwb.io/docs/v5.0/integration/application-notes/apd001-cuwb-operational-modes

System Architecture

3.3.5 CDP Processing

The CUWB Engine’s primary Real-Time form of communication is CDP (Ciholas Data Protocol) over UDP/IP. The CUWB
Engine has three main streams of CDP traffic and three user optional streams :

[e petnen

Anchor Stream Information sent from Anchor Network devices to the CUWB Engine.

Output data for User Applications to track position, configuration, status, and sensor

User Stream . .
information.

Config Stream Data exchange utilized to bring new devices online.

Data exchange utilized by the CUWB Engine to send multicast commands to UWB

Command Stream .
devices.

[Optional Stream] Information sent from the Anchor Array containing debug information

Debug Stream L
and statistics.

[Optional Stream] CDP commands packets from external applications bound for CUWB

Data to Device Stream
tags and anchors.

3.4 CUWB Firmware

Each device in a CUWB Configuration utilizes CUWB Firmware. The firmware has limited default behaviors, along with
configurable applications that help the devices fulffill their roles within a CUWB Configuration.

The CUWB Engine provides a list of commands to each device upon joining a CUWB Configuration. These commands
determine how the device will interact, when it will receive and transmit, what sensors it will use, and other behaviors like
W ake-on-Shake.

3.4.1 UWB Communications Search

All devices, even Ethernet connected devices, listen for UWB traffic periodically when they are not configured to bein a
CUWBNet. Once a device is able to detect and lock into a CUWBNet, a UWB packet is sent to join the device to the
CUWBNet. The CUWB Engine gives each device their commands, allowing the device to behave according to the CUWB
Configuration.

3.4.2 Command Processing / Applications

Each CUWB device handles commands from the CUWB Engine. The firmware has separate applications to handle each
command. The applications can do any number of tasks, such as setup sensors, drive LEDs, or schedule events in the
UWB stack to cause transmissions and receptions to occur.

3.4.3 Ethernet Devices

CUWB devices with Ethernet connectivity can serve as Anchors. After devices establish an Ethernet link, they send
discovery CDP packets on the Config Stream. The CUWB Engine utilizes these discovery packets to detect new devices and
send them commands.

3.5 Support Applications

3.5.1 User Applications

- Revision: 5.0.1
@ Ciholas, Inc. Page 5 of 8

https://cuwb.io/docs/v5.0/integration/data-formatting/cdp-output-definition

System Architecture

Customers often run their own applications to log, monitor, and control CUWBNets. These applications have access to
position data, sensor data (if available), and user data.

CDP processing from the User Stream is the most common connection. Some applications utilize the APl to dynamically
change configuration and device settings. Additionally, some applications send CDP to a CUWBNet using the Data to Device
Stream.

. Revision: 5.0.1
@ Ciholas, Inc. Page 6 of 8

https://cuwb.io/docs/v5.0/integration/data-formatting/cdp-output-definition/#0x0135---position-v3
https://cuwb.io/docs/v5.0/integration/application-notes/apd004-using-cdp-python
https://cuwb.io/docs/v5.0/integration/data-formatting/rest-api

System Architecture

3.5.2 CUWB Viewer

CUWB Viewer provides a user interface displaying the locations of CUWBNet devices, such as anchors and tags in real
time. The CUWB Viewer also presents basic system information, such as device status, statistics, sensor plotting, and

more.

CUWB Viewer also gives users the ability to import objects and create 3D environments replicating the physical space of a
CUWBNet. Additional information can be found in the CUWB Viewer Manual.

The CUWB Viewer listens to the User Stream.

3.5.3 CDP Logger / Player

The CDP Logger records data from the CDP Streams. The player can playback the logged data in a time synchronized
fashion. The logger and player are useful in debugging and development. Additional information can be found in the CDP

Logger Manual.

. Revision: 5.0.1
@ Ciholas, Inc. Page 7 of 8

https://cuwb.io/docs/v5.0/software/cuwb-viewer
https://cuwb.io/docs/v5.0/software/utilities/cdp-logger

System Architecture

4 System Interface

4.1 Data Hooks

The Ciholas Data Protocol (CDP) provides a method of communication between devices and services. CDP data is
transmitted over ethernet as User Datagram Protocol (UDP) packets. Ciholas Real-Time Location Systems (RTLS) emit
position data using the CDP format as an accessible way for users to gain access to the data and integrate their software.
CDP packets are transmitted through CDP Streams. CDP Streams are identified by the Ethernet interface, IP address, and
Port through which the packet is sent. Streams are allowed to be both multicast and unicast. Different CDP Streams are
defined to distinguish different categories or classes of data.

The CUWB RTLS supports using Ciholas Data Protocol (CDP) over a User Datagram Protocol (UDP) connection. The CDP
packet definitions are available under Ciholas Data Protocol.

4.2 Control Hooks

The CUWB RTLS has an RESTful API available for use. This API configures all of the resource units required to facilitate the
creation, configuration, and deletion of CUWB Networks within the CUWB RTLS platform. Users have the option of creating
their own control mechanisms utilizing this API. The expected response formats are also provided for success, failure, and
error scenarios.

The CUWB RTLS API is available under CUWB Manager - API Control

4.3 User Data

A CUWBNet can be configured to allow Tags to send additional data (User Data) along with beacons. The Tags are
configured to send this data over time, using fragmentation, to reduce the air traffic required to support this additional
data. CUWB Engine collects and reassembles the fragmented data. Upon full reassembly the CUWB Engine emits a CDP
Data Item on the User Stream with the contents of the additional data.

4.4 SNMP Support

Ciholas is working to provide SNMP support for Enterprise level customers. Keep an eye out for additional SNMP
announcements.

. Revision: 5.0.1
@ Ciholas, Inc. Page 8 of 8

https://cuwb.io/docs/v5.0/integration/data-formatting/cdp-output-definition
https://cuwb.io/docs/v5.0/integration/data-formatting/rest-api

	Architecture Overview
	System Components Diagram
	Host PC
	CUWB Subscribers
	CUWB Devices
	Anchors
	Tags

	System Architecture Diagram
	CUWB Manager
	API Backend
	UI Frontend
	Websocket

	CUWB Configurations & CUWBNets
	CUWB Configuration File

	CUWB Engine
	Configuration Management
	Scheduler
	Time Synchronization Management
	Localization
	CDP Processing

	CUWB Firmware
	UWB Communications Search
	Command Processing / Applications
	Ethernet Devices

	Support Applications
	User Applications
	CUWB Viewer
	CDP Logger / Player

	System Interface
	Data Hooks
	Control Hooks
	User Data
	SNMP Support

